TWO-PARAMETER METHOD OF SUMMING EQUIVALENT SPECTRAL LINEWIDTHS IN THE
CURTIS—GOODSON APPROXIMATION

Yu. V. Khodykov and L. T. Perel’'man : UDC 535.231.4

An expression is found, withinthe framework of a random band model, for the spec~
tral-line intensity distribution density in application to the problem of IR radia-
tion transfer in an inhomogeneous molecular-gas volume.

A great deal of attention has recently been spent on investigating the radiation of
heated volumes of molecular gases in the IR spectrum range and the transfer of this radiation
in earth's atmosphere. Taking account of the exact dependence of the absorption coefficient
on the frequency in such problems should be performed in a band formed by a large number of
spectral lines, which complicates the analysis considerably and usually without justificatiom.
In this connection, a number of authors proposed approximate methods permitting taking the
average of the band fine structure. One of the most effective methods, called the statistic-
al or random band model, was developed by Goody [1] and assumes no correlation between the
spectral line intensity and the frequency of its center. Within the framework of this model,
the average with respect to the passband, to whose calculation the solution of the  spectral
radiation transport equation actually reduces, turns out to be proportional to the exponental
of the sum of the equivalent widths of all the band lines.

The sum of the equivalent widths V is calculated most simply for homogeneous optical
paths, if it is here assumed that the band is representable with a sufficient degree of ac~
curacy in the form of a set of nonoverlapping lines having an identical Lorentz contour:
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where the equivalent width of an individual line is determined by the relationship
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Here P(S)dS is the probability that the intensity of a given spectral line is in the in-
terval between S and S + dS. The form of the distribution density P(S) is ordinarily suffi-
ciently arbitrary and selected from both the requirement of correspondence of the computation
to experimental data and from considerations of convenience, for instance, Sotexp(—S8/Se) or
So/8 [2]. Giving themean with respect to the line-intensity spectrum S, turns out to be suf-
ficient for a good approximation of their real distributiom.

However, the extension of similar, relatively simple methods to the more complex case
of inhomogeneous optical paths is of special interest. In particular, in an approximation
proposed independently by Curtis [3] and Goodson [4] for the random band model, it is assumed
that the passage of an inhomogeneous gas layer can be approximated well by the passage of a
certain homogeneous layer of the same gas if it is demanded that the equivalent widths of
each line, taken individually, of the model homogeneous layer agree with the true widths in
the weak and strong line limit cases. This requirement results in the parameters y and S in
(2) being replaced by <y> and <S> characterizing the model optical path, where:
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i.e., <y> and <S> can be understood to be special means along the optical path. Here ),
which yields the method of evaluating the sum V, also remains valid, except that the param-
eter So in P(S) is now averaged twice, with respect to the spectrum and with respect to the
inhomogeneous layer. '

It is here necessary to investigate the correctness of summing equivalent widths in the
form (1) with a previously assigned distribution function P(S). The fact is that for notice-
able temperature fluctuations along the optical path, the population of high-lying energy
levels of the absorbing (emitting) gas molecules grows substantially in the high-temperature
sections. In turn, this results in the necessity to take into account both the "cold" as well
as the "hot" lines formed because of transitions from the high-energy levels, and which are
ordinarily ignored in computations. Taking such lines into account should generally change
not only the mean intensity over the band S, but also the form of the distribution density
P(S). Hence, to avoid errors associated with discarding the "hot" lines, a change in the sum-
mation procedure is proposed in [5], whereupon the spectral-line distribution density in two
parameters is introduced: in the energy of the lowest level of the transition under considera-—
tion ¢ and the normalized line intensity, i.e., the intensity corresponding to the transition
from the level e if its population were equal the Loschmidt number. In this case, i1t will be
more convenient for us to modify the second parameter somewhat and consider it equal to the
product of the square of the matrix element of the dipole transition moment Dy by the multi~
plicity of lowest-level degeneration gy:

ngkDZh . (4)

Then the sum of the equivalent band linewidths takes the following form when the two-parameter
density f(e, m) is used (summation over the energies is later replaced everywhere by integra-
tion in the standard manner):

V= jzds dmf (e, m)W (e, m), (5)
3 ,
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where W(e, m) is easily obtained from W(S) (formula (3)) 1£ it is taken into account that the
local line intensity S(x) is expressed as follows in terms of € and m [6]:

S (x)= 32—0"5—3% (1 — exp (__ %)) gxD% exp (—ff) =\(T)mexp(—PBe).

Here Q(T) = Eghexp (—ex/RT) is the statistical sum of the molecules, and in addition,
5

the following notation is introduced:
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Returning to the examination of radiation propagation along an inhomogeneous optical path,
we can write an expression for the equivalent linewidth in new variables in the form
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Utilizing the theorem of the mean, we reduce the integral I(e, m) in the exponent of the ex-
ponential to the form
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where
1
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0
The Curtis—Goodson requirement of agreement between the exact equivalent width W(eo,
mo) of each individual line within the strong and weak absorption limits and the equivalent
width of this same line (eo, mo) in the model homogeneous gas layer is satisfied if
!

(V) = e [ ()7 () exp (—B () ).
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It is now easy to see that such averaging over an inhomogeneous optical path results in a
standard Curtix—Goodson mean (see (3)); for this it is sufficient to take into account how
A(x) and B(x) are related to S(x) in the last expression and to introduce <S> in the form

(Sy = md(e). 9]

The function P{S) can be determined as follows from the known two-parameter density f(e,
m). If it is considered that the total number of lines in the band equals ny, then the num-
ber of lines whose intensity is within the interval from S to S + AS equals npP(S)AS. On the
other hand, the number of lines of intensity S formed by transitions from levels in the energy
interval from e to e + Ae is myf(e, So(e) HAcAm(e), where Am(e) = AS¢(e)™!, as follows from
(7). Then the total number of lines with intensity S in the interval AS is found by summing
npf (e, S(e) *Ae[AS/®(e)] over all possible values of the energy. Furthermore, by equating
the sum to npP(S)AS and canceling identical factors, we have

% de S
P(S)= fle, ]
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As should have been expected, the introduction of the mean line intensity S, is insuf-
ficient to take account of averaging over the inhomogeneous optical path. We see that taking
more accurate account of the gas layer inhomogeneity results in a change in the functional
dependence of the line intensity distribution demsity in the band.

A further simplification is possible when the function f(e, m) is successfully expressed
in explicit form for some specific molecule models. Let us note that, in contrast to P(S),
the two-parameter density is independent of thermodynamic quantities, i.e., of the state of
the gas, and is determined completely by the characteristics of the molécules.

Let us consider some discrete energy spectrum without degeneration, and moreover, we
will consider the number of levels to be a single quantum number. Let e=90(n), m=Q(n 9q)>
and let the system make the transition from the level n to k = n + q; hence, the meaning of q
"is clear. Then f(e, m) can be represented. in the form

o
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ds
g=1
where G(g) denotes the function reciprocal to §(n). Formula (9) is obtained if it is taken
into account that for a fixed q the number of spectral lines formed by transitions from levels
whose energy is less than € equals

R o) =n—q==G(e)—¢,
and, therefore, the distribution density of such lines is proportional to
OR (e, q) _ 9G(e)

ds ae

Taking account of (8) and (9) we obtain for the distribution density P(S):
9G (&)
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where the functions nqi(S) are roots of the equation _
S = @ (ng;) QG (ngs), 91, (11)
‘and the sum over i in (10) corresponds to summation over all the roots of (11).

We write these formulas for the case of a weakly inhomogeneous layer, although it is not
of independent value but clarifies their meaning. In a first approximation it is always
possible to limit oneself to the first term in the sum over q since the remaining transi-
tions are usually attenuated strongly by the selection rules. Then '

! !
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(k<B>)"' characteristic for the whole layer for clarity, we

Introducing the temperature T
write
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S - <x>exp( "Zk‘;?’ )Q[Gm ()] (12)
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P(S)= (13)

The greatest and least line intensities can be determined from (12) from the known fre-
quency boundaries of the band under investigation, namely, SM@X and Smin, Then the line in-
tensity distribution density for our band takes the form

0’ S<Smin’

kT min max
P(S) = —S-;EZ(m(S), T), SIS S™,

0’ Smax<8,

where

Z( T)=a (l—kT——a—ln Q (G (e)]
de

Therefore, evaluation of P(S) for a specific gas reduces to finding the functions nj(S)
and Z(e, T). For instance, let us consider the spectrum of diatomic molecules. Since we are
interested in the IR range, we will consider just the vibrational—rotational transitions with-
out changing the electron configuration of the molecule. Then the problem about the relative
motion of two nuclei reduces, as is known, to the problem of particle motion in a field with
effective potential which has the following form in a first approximation [7]:

few]

Ury==U,+ BK(K + 1) + (r—rof

The third term here corresponds to a one-dimensional harmonic oscillator; consequently, we
write for the energy

5 1
&= U, + BK(K + 1) + o, (n + '5)'
It can here be considered that the weak anharmonicity of the oscillator term that appears in
the next order of the expansion of the potential in a small parameter will permit resolution
of the line with respect to frequency, but cannot be taken into account in a first approxima-
tion in the calculation of G(g) and Q[G(e)].

Let us find gSD;p for the tramsitionn > n+ 1, K+ K —1 (P is a branch of the spectrum
band)

g(mD(an)(nH. K—1) = @K V [(n+ 1, K—1, M'ierjn, K, M} 2= ﬂ‘?_j((n + ).
gK—1 M, \4 2m5.(00 ’

In the case of the transition K+ K+ 1 (R is a branch), the quantity K is replaced by K+ 1
in the last formula. Then by fixing n we have

G, n)= —2— VIi+4BHe—E@n)—1j, (14)
QiG(e, n)] = —2@3—@ + 1DG{(e, n), (15)

where E(n) = Ug + Hweln + (1/2)].

Taking account of the explicit form of the function Q[G(g, n)], Eq. (12) for ni(S) is
written as follows:

hw n 41

Wi+ 4B~'(y;, —E(n)) — 1, (16)

5= <7\.>exp( ;‘T)

2mqm, 2

and we obtain the following iteration equations for the two roots of this transcendental
equation:
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where u(n) = <x>(n + 1)e*hw(4mgwe) -

For fixed n we obtain for the line intensity distribution

0T | Vi —E@)
Pp(S) 2 —oe i , .
25y B = M) —E(@n)— —;— kT| 1n

Then the total distribution density P(S) can be written in the form
P(S)= X OEI*—90(S—SIIP, (). (18)
n=
where 0(z) is the Heaviside function and the limits of variation of Pp(S) are obtained from

the following considerations: the upper limit is determined by the maximal value of the right
side of (16), and the lower by the frequency range under consideration. A simple estimate

yields
max ET \1/2 [ E(ﬂ)
Sa o~ n) | — [-:4 _——_,
h )( B ) P ( kT )
min 4Aph \1/2 E(n)+Aph
n' ~ B (————P ex (*————'—————)
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Calculations were also performed for the R-branch of the spectrum band. Finally, the
normalizing factor equals
a=( | dsp (S))_‘.

0

It should be noted that in practical calculations it is always possible to limit one-
self to the first three to four terms of the sum over n in (18). Computations can analo-
gously be performed for strongly inhomogeneous media also with the sole difference that (12)
and (13) determining the functions nj(S) and P(S) should be replaced, respectively, by (11)
and (10).

The formalism proposed here permits more accurate averaging of the band parameters for
inhomogeneous molecular-gas layers and finding the line intensity distribution demsity in
each specific case, although it certainly complicates the calculation procedure.

NOTATION

W, V, equivalent width and sum of the equivalent line widths; S, So, y, line intensity,
mean intensity over the spectrum, and half-width; <--<>, symbol for taking the average over
the optical path; 7, optical path; e, gg, energy and multiplicity of level degeneration; D; R
square of the matrix element of the dipole moment; v, frequency; v, frequency of the line cen~-
ter; we, frequency of the normal molecule vibrations; Ap, frequency range in the domain of
the band P-branch; np, number of lines in the band; N, number of molecules per unit volume;
Q(T), statistical sum of the molecule; T, temperature; B, reciprocal temperature; §(z), Dirac
delta function; 0(z) =1, z » 0, 9(z) = 0, z < 0, Heaviside function; SMax, Smin’ line in-
tensity limit values; B, a rotation constant; h=2rh, Planck's constant; k, Boltzmann
constant; U(r), molecular potential; ro, value of r minimizing U(r), Ug = U(ro); x,
coordinate along the optical path; m,, reduced mass of the molecule; w, nucleus weight factor;
P(S), f(e, m), the one- and two-parameter line distribution densities; n, K, M, vibrationmal,
rotational, and magnetic quantum numbers; c, velocity of light, a, normalizing factor; e,
charge on the electron.
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THEORETICAL MODEL OF HIGH~CURRENT RELATIVISTIC ELECTRON-BEAM INTERACTION
WITH A METAL OBSTACLE

G. S. Romanov, M. V. Suzdenkov, UDC 536.422.1
A, V. Teterev, and F. G. Fokov

A method is described and results are presented for a numerical computation of
crater and plasma-flare formation under the effect of a high-current relativis-
tic electron beam on an aluminum obstacle.

During the interaction of high-current charged-particle beams, for example, relativistic
electron beams (REB), withhigh power density and a metal obstacle, heating, evaporation, and
rupture occur. The set of physical processes governing the dynamics of crater formation and
the ejection of mass in the form of highly ionized target vapors differs substantially here'
from the sufficiently well-studied processes accompanying material treatment by particle beams
at moderate energy-flux densities [1, 2]. Computations and experiments [2-4] show that for
109-107<A beam currents and 1-10-MeV electron energies the pressure in the action domain
reaches. 1-50 Mbar, the temperature 10-30 eV, and the velocity of the vapors being ejected
100 km/sec. A hydrodynamic model in which dissipative processes assocjiated with charged-
particle beam energy transfer to the target substance, target deformation and rupture under
the effect of the shockwave, and energy transfer in the highly heated target vapors by the
radiation diffusion mechanism are taken into account is applicable for the description of
the dynamics of phenomena with such parameters.

Such a model is considered in this paper. It 1s here taken into account that the motion
that occurs is axisymmetric and the target can be both finite and semiinfinite in thickness.
We mention that in an analogous formulation, but without the spatial distribution of the energy
liberation zone and the radiation diffusion of the energy in the vapor flare taken into ac-
count, the described problem was solved numerically in [4]; however, the results presented
there do not afford the possibility of composing a sufficiently complete representation of
the parameters of the motion that occurs.

Let us consider formulation of the problem. Energy is liberated in a certain volume of
the target because of REB action, resulting in melting, evaporation, and ionization of the
target material. Under the action of pressure forces the substance is set in motion, a plasma
flare is formed, and a crater in the target. Since REB with electron energies above 0.1 MeV
produce an interaction zone with quite definite volume nature in the target, we apply the
method of multiple electron scattering in a substance to compute the zone by using angular
distributions computed by Goudsmit—Sanderson theory. Preliminary computations of the energy
liberation zone configuration in the 0.5-10-MeV electron energy range displayed good agree-
ment with the results of computations by the successive collisions model [6], as well as with
the experimental results [4, 6]. The density profiles in the interaction zone wvary during the
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